

PROCESS CONTROL UNITS ml -PIDC6 & ml -PIDC8

mL-PIDC6 & mL-PIDC8 Universal Input PID Process Controllers

- 4 digits process (PV) and 4 digits process set (SV) display
- Universal process input(TC, RTD, mV == , V == , mA ==)
- Optional secondary sensor input
- Dual or multi point calibration for ___voltage & ___Current input - Configurable ON/OFF, P, PI, PD and PID control forms
- Auto-tune and Self-tune PID
- Manual/Automatic mode selection for control outputs
- Bumpless transfer
- Motorized valve control function
- Programmable heating, cooling and alarm functions for control outputs
- 8 steps profile control (Ramp & Soak) function and start-hold stop by using logic input module
- Remote set point function by using analog input modules
- Re-Transmission
- Detection of heater failure by using 0...5 A

 CT input module
- RS-485 serial communication with Modbus RTU protocol

SPECIFICATIONS:

Process Inputs

Universal Input: Universal input, TC, RTD, ___Voltage/Current Thermocouple (TC): L(DIN 43710), J, K, R, S, T, B, E ve N (IEC584.1)(ITS90), C (ITS90)

Thermoresistance (RTD): PT-100 (IEC751)(ITS90)

= Input : mV, V, mA

Measurement Range: Please refer to Table-1 for selection of input type and scale

Accuracy: ± 0,25% of full scale for thermocouple, thermoresistance

and voltage

Cold Junction Compensation: Automatically ± 0.1°C/1°C. Line Compensation: Maximum 10 Ohm

Sensor Break Protection: Upscale Sampling Cycle: 3 samples per second Input Filter: 0.0 to 900.0 seconds

CONTROL

Control Forms: Programmable ON / OFF, P, PI, PD or PID.

Standard Relay Output: 5A@250V~ (Programmable control or alarm output) (Electrical Life: 100,000 Operation (Full Load))

Extra Relay Output -3A@250V~Relay Output

ADDITIONAL INPUT

Extra Analog Input -0/4...20 mA === Current Input

Supply Voltage

100-240V ~ 50/60 Hz (-%15:+%10) -6VA

INDICATORS

Process Indicators :

mL-PIDC6: 10.1 mm Red 4 digit LED Display mL-PIDC8: 13.2 mm Red 4 digit LED Display

Setpoint Indicators:

mL-PIDC6 & mL-PIDC8:8 mm Green 4 digit LED Display

LED Indicators: AT(Auto Tuning), SV(Set Value), Man(Manual Operation), Auto(Auto Operation), O1/2/3 (Output status LEDs), °C, °F V. Ramp and Remote LEDs

Environmental Ratings and Physical Specifications

Operating Temperature: 0...50°C

Max. Operating Humidity: 0-90%RH (non-condensing) Protection Class: NEMA 4X (IP65 at front, IP20 at rear).

Mounting: Type-1 Enclosure Mounting Installation: Fixed installation Category II

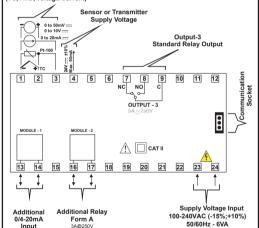
Over Voltage Category: II

Pollution Degree: II, office or workplace, none conductive pollution Weight:

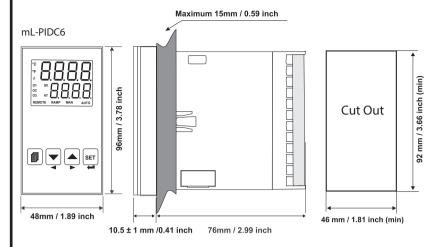
mL-PICD6 & mL-PIDC8 : 260 ar.

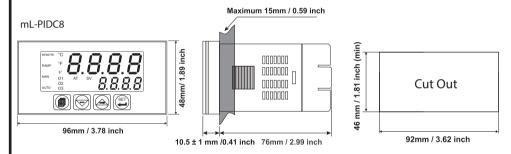
Dimensions / Panel Cut-Out:

mL-PIDC6: (48 x 96mm, Depth: 86.5 mm) / (46 x 92mm) mL-PIDC8: (96 x 48mm, Depth: 86.5 mm) / (92 x 46mm)

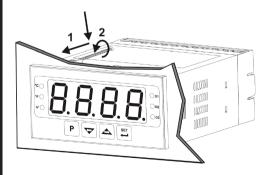

Minimum Distance Between Panel Cut-Out Centers:

mL-PIDC6: X=65mm, Y=129mm mL-PIDC8: X=129mm, Y=65mm

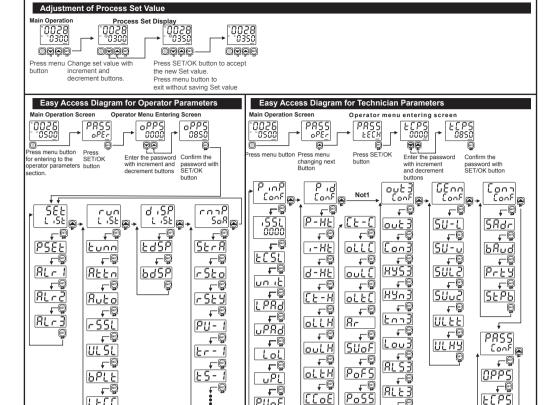

Electrical Connections


Universal

Process Input (TC, RTD, Voltage/Current)



DIMENSIONS



PANEL MOUNTING

- 1-Before mounting the device in your panel, make sure that the cut-out is of the right size.
- 2-Check front panel gasket position
- 3-Insert the device through the cutout. If the mounting clamps are on the unit, remove them before inserting the unit to the panel.
- 4-Insert the unit in the panel cut-out from the front side.
- 5-Insert the mounting clamps to the holes that are located on top and bottom sides of the device and tighten the fixing screws until the unit is completely immobile within the Panel

PUoF

iFLE

r@

re

JnŪ

PU-8

Set List: Set values

P588 Proses Set (-1999,9999)Unit

.ECC

BL - Alarm-1 Set (-1999.9999)Unit

Rt - 2 Alarm-2 Set (-1999.9999)Unit

BLr∃ Alarm-3 Set (-1999,9999)Unit

Run List:Selection of PID Tune and Operation Form

TUNE SELECTIONBy selecting one of the methods below. device can determine the PID parameters.

Device operates according to the defined PID

Auto tune (Limit Cycle Tuning) operation

55 Self tune (Step Response Tuning) operation

Auto-Self Tune Self Tune operation is performed, if the conditions are realized when power on firstly. In normal operation, it controls the tune conditions in Auto Tune selection which explained below. If any of the conditions is realized, it performs the Auto Tune operation

REED AUTOMATIC TUNE SELECTION

Device does not do (Limit Cycle Tuning) operation

SES Device does (Limit Cycle Tuning) operation

But o OPERATION FORM SELECTION

₽

₽

₽-©

Stro

<u>o-db</u>

Sbou

Rutomatic: The device automatically calculates the % output

AL H3

Ron3

RoF

Manual: % output rate can be controlled manually by using direction buttons.

₹55 Ramp/Soak Control

E E 0 E

P-[L

1-EL

ld - [

₽®

J-@

F

FF Ramp/Soak function is deactivated

Ramp/Soak function is active

Hold Ramp/Soak function is holding. Real time is stopped

WEST MOTORIZED VALVE CONTROL

no Motorized valve control is deactivated

IHERE Motorized valve runs with heating PID function.

[col] Motorized valve runs with cooling PID function.

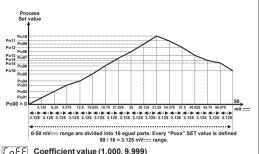
BUMPLESS TRANSFER

Process output value in manual control is not taken into consideration while passing from manual control to automatic control. New control output that is measured in automatic control is applied to process output. Last % output value is taken output value of manual control and manual control continues while passing from automatic control to manual control

6.55

3ES While passing from manual control to automatic control, last process Defines type and scale of the thermocouple for TC input. It output value in manual control is accepted as first process output value in is active if TC input type is selected automatic control and automatic control continues to run. Last % process output value in automatic control is accepted as process output value of 0000 L (-100°C;850°C) or (-148°F;1562°F) manual control and manual control continues to run. DDD | L (-100.0°C;850.0°C) or (-148.0°F;999.9°F) LEEE ALARM LATCH CANCELING 0002 J (-200°C;900°C) or (-328°F;1652°F) Alarm latch canceling is not performed. ППП∃ J (-199.9°C:900.0°C) or (-199.9°F:999.9°F) 985 If there is an alarm output with latching and there is no ПППЧ К (-200°C:1300°С) or (-328°F:2372°F) alarm status, latching operation will be finished by the 0005 K (-199.9°C;999.9°C) or (-199.9°F;999.9°F) device. When it is finished, this parameter becomes Automatically MARIA R (0°C:1700°C) or (32°F:3092°F) 0001 R (0.0°C;999.9°C) or (32.0°F;999.9°F) Display Function Selection for Top and Bottom Display 0008 S (0°C;1700°C) or (32°F;3092°F) ₹ d5P It defines the function of the top display. This parameter determines which value is shown in top 0009 S (0.0°C;999.9°C) or (32.0°F;999.9°F) display. @@ i@ T (-200°C:400°C) or (-328°F:752°F) Process value (PV) is shown in top display III T (-199.9°C:400.0°C) or (-199.9°F:752.0°F) @@@ Result of subtraction of process set value from process 00 12 B (44°C;1800°C) or (111°F;3272°F) value (SV-PV) is shown in top display ITO IR B (44.0°C:999.9°C) or (111.0°F: 999.9°F) 0002 If one of the analogue input modules is plugged in Module-1 00 14 E (-150°C;700°C) or (-238°F;1292°F) or Module-2 socket, measured value from this module input [[[]] [S] E (-150.0°C;700.0°C) or (-199.9°F;999.9°F) is shown in top display. 00 15 N (-200°C;1300°C) or (-328°F;2372°F) 5년5위 It defines the function of the bottom display 0017 N (-199.9°C;999.9°C) or (-199.9°F;999.9°F) This parameter determines which value is shown in bottom display. 00 18 C (0°C;2300°C) or (32°F;3261°F) @@@@Process set value (SV) is shown in bottom display. 00 19 C (0.0°C;999.9°C) or (32.0°F;999.9°F) @@@ | %Output value that is applied to process control output is □ Lorentz Defines type and scale of sensor for RTD input. It is active if shown in bottom display. RTD input 0002 Status of the Ramp/Soak function is shown in bottom 0000 PT-100(-200°C;650°C)or(-328°F;1202°F) Display. DDD | PT-100 (-199.9°C : 650.0°C) or (-199.9°F : 999.9°F) [DDD3] If one of the analogue input modules is plugged in Module-1 or Module-2 socket, measured value from this module input URSL == Voltage / Current Input Selection is shown in top display. This parameter is active if ____Voltage / Current is selected. 0004 If CT ~ input module (EMI-420) is plugged in Module-1 or 0000 0...50mV === (-1999; 9999) Module-2 socket, measured value from this module input is 000 1 0...5V === (-1999; 9999) shown in bottom display. 0002 0...10V === (-1999; 9999) rmP SoA: Configuration of RAMP/SOAK Function and Step SET Values 0003 0...20mA === (-1999; 9999) SEFR Soft-Start parameter. 0004 4...20mA === (-1999; 9999) When the power is applied to the device, process value reaches to the set value at the end of this time. ਰ우n는 Display Point Position - 5 ₺ ○ Ramp Soak Tolerance Parameter (%0;%50 Scale) This parameter is active if ____Voltage / Current is selected. In Ramp/Soak operation, if process value is out of the 0000 No point tolerance that is defined with this parameter, then time is DOD | Between first and second digits "0.0" Between second and third digits "0.00" 구 5 년 년 Ramp/Soak program step selection parameter. 0000 1.program 1-4 steps @@@3 Between third and fourth digits "0.000" 000 | 2.program 5-8 steps 교문유년 Display Value Adjustment Type [0002] Steps between 1-8 is used as one program. 0000 Fixed dual point display adjustment. Display adjustment low P나- | Ramp/Soak step set value. point value is fixed to -1999, display adjustment high point For ramp operation; process value reaches to step set values that are value is fixed to 9999. defined with these parameters at the end of the time that are defined in PU-8 ramp time parameters. For soak operation ; process value is constant in User can do dual point display adjustment with tPoL and tPoH. step set value that are defined in these parameters for time that are defined in soak time parameters. Ramp/Soak step set values can be User can do defined 16 display adjustment points. adjusted from minimum value of set scale to maximum value of set 눈무하는 Low Point Display adjustment (-1999, 9999)Unit Active if ____Voltage / Current input is selected. Er- 1 Ramp time for Ramp/Soak Process value reaches to step set values at the end of the 문무oH High Point Display adjustment (-1999, 9999)Unit time that are defined in these parameters. £--8 Active if ____Voltage / Current input is selected. E5-1 Soak time for Ramp/SoakProcess value is constant in step Po [] Display adjustment points (-1999, 9999) Unit I set value for time that are defined in these parameters. This parameter is active if ____Voltage / Current is selected. 8-23 In multi point display adjustment operation, defined scale is Po 16

Configure Process Input Type and Relevant Parameters with Process Input


,551 Defines the process input 0000 TC input type selection COO | RTDinput type selection

ODD2 ----Voltage/Current input type selection.

divided into 16 adjustment points.

0 (0-50 mV===).

For example: URSU is

Coefficient value (1.000, 9.999)

Process value is multiplied with this value.

Active if ===Voltage / Current input is selected.

ພ⊓ ₁ ⊱ Unit selection

୍ର Unit°C

야 Unit °F

Unit is Voltage. Active if ____Voltage / Current input is selected

No unit. Active if ──Voltage / current input is selected

Process Value Low Point Adjustment Parameter (For TC and RTD input scales)
It can be adjusted -50% to 50% of scale.

Process Value Up Point Adjustment Parameter (For TC and RTD input scales)
It can be adjusted -50% to 50% of scale.

Operating Scale Minimum Value
(Scale Low Point, Scale High Point)Unit
Used for Proportional band calculation and display blink.

(Scale Low Point, Scale High Point)Unit
Used for Proportional band calculation and display blink.

PijoF Display offset for process value (Scale -10%, Scale +10%)Unit This parameter value is added to the process value.

Filter Time (0.0, 900.0)Second Defines filter time for display value.

Cold Junction Compensation
This parameter is active if process input is selected TC input.

YES Cold junction compensation is active.

Cold junction compensation is not active.

Scale: The difference, between high point and low point of the process input type. Example: If tCSL = 2 (low point is -200, high point is 900), then scale is 1100. If input type is Voltage/Current, then the scale is difference between tPoH and tPoL parameters.

PID ConF: PID Configuration Parameters

P-HE PROPORTIONAL BAND (0.0, 999.9)% If □PE = 1000 °C, □LoL = 0 °C and P-HE = 50.0
+ then Proportional Band = (1000-0)*50.0/100.0 = 500 °C

[I-HE] INTEGRAL TIME (0, 3600)Second

Can be changed by the user. After complated the tunning correctly, integral time value changes automatically. If it is 0, integral control is deactivated.

G-HE DERIVATIVE TIME (0.0, 999.9)Second

Can be changed by the user. After complated the tunning correctly, integral time value changes automatically. If it is 0,

derivative control is deactivated.

[L-H] CONTROL PERIOD TIME (1, 150)Second
Process output period time

□ L L H MINIMUM CONTROL OUTPUT (0.0, □ ∪ L H)%

Even as a result of the PID calculation device calculates the %output value less than this parameter, heating or cooling output is active minimum for OLL parameter.

OULH MAXIMUM CONTROL OUTPUT (@LLH, 100.0)%

Even as a result of the PID calculation device calculates the % output value greater than this parameter, heating or cooling output is active maximum for OUL parameter.

DL는님 HEATING MINIMUM CONTROL OUTPUT TIME(0.0[근-H))sec
Heating output can not be active less than this parameter.
Even if this parameter is 0, this parameter is accepted
50 msecs for security.

COOLING PROPORTIONAL BAND COEFFICIENT (0.0, 100.0)

If heating and cooling PID is used in a system, tune operation is performed by heating output. Cooling proportional parameter is calculated with heating proportional band value and coefficient(P-CL = P-Ht * COE / 100.0)

P-[] COOLING PROPORTIONAL BAND (000.0%, 999.9%)

If □P] = 1000 °C, □□P] = 0 °C and □P-E] = 50.0 ise

Proportional Band = (□PP) - [□P]) * □P-E] / 100.0

Proportional Band = (1000-0)*50.0/100.0 = 500 °C

I-LL COOLING INTEGRAL TIME (0000 sec, 3600 secs)
It can be changed by the user. When tune operation finishes, it can be changed by the device. If it is 0, integral control part does not perform.

O-LL COOLING DERIVATIVE TIME (000.0 sec, 999.9 secs)
It can be changed by the user. When tune operation finishes, it can be changed by the device. If it is 0, derivative control part does not perform. When tune operation finishes if this parameter is 0, it can not be changed because derivative control part does not perform.

[L - [COOLING OUTPUT PERIOD TIME (1 sec, 150 secs)
It is control period of cooling output.

ott[COOLING MINIMUM CONTROL OUTPUT(0.0, out[)%

It is % of cooling minimum output. If heating and cooling PID control functions operate together, this parameter is not considered. Even as a result of the cooling PID calculation device calculates the output value less than this parameter, cooling output is active minimumor OLLC parameter.

DULT COOLING MAXIMUM CONTROL OUTPUT ([LLL],100.0)% It is % of cooling maximum output.

Even as a result of the cooling PID calculation device calculates the output value greater than this parameter,

cooling output is active maximum for OULC parameter.

at Et COOLING MINIMUM CONTROL OUTPUT (0.0%, [[E-[]]

Cooling output can not be active less than this parameter. Even if this parameter is 0, this parameter is accepted 50 msecs for security.

Rr ANTI-RESET WINDUP (正元,0-SCALE HIGH POINT)UNIT While PID operation is running if [予5至] - Rr = = process value <= [予5至] + Rr = condition is true, integral value is calculated. If the condition is not true, integral value is not calculated and last calculated integral value is used. If Ar Parameter is selected [正元], heating proportional band is used for heating PID process instead of Ar Parameter and cooling proportional band is used for cooling PID process instead of Ar Parameter.

SUOF SET VALUE OFFSET

((-SCALE HIGH POINT/2), (SCALE HIGH POINT/2)) Unit

PSEL+5UoF is used as set value in PID calculations. This
parameter is used for shifting the proportional band.

Pof 5 PID OUTPUT OFFSET

(FOR HEATING PID 0.0, 100.0)%
(FOR COOLING PID -100.0, 0.0)%
(FOR HEATING & COOLING PID : -100.0, 100.0)%
This parameter is added to "Output %" which is calculated at the end of the PID.

Poss OUTPUT OFFSET RELATED TO PID SET (FOR HEATING PID 0.0, 100.0)% (FOR COOLING PID -100.0, 0.0)% (FOR HEATING & COOLING PID : -100.0, 100.0)%

This parameter is added to the %process output that is calculated at the end of the PID according to process set value $\frac{|P_0SS|}{|P_0SS|} * \frac{|P_0SE|}{|P_0SS|} / (\frac{|P_0P_0|}{|P_0P_0|} - \frac{|P_0P_0|}{|P_0P_0|} - \frac{|P_0P_$

SECO PROCESS VALUE STABILIZATION IOP1 ConF:MODULE-1 Configuration Parameters (1. SCALE HIGH POINT)Unit These devices are equipped with a 0/4 to 20 mA analog It is used for controlling if process value oscillates or not input plugged into Module-1 when Euro Parameter is REUN or RESE If; PSEE - Seco <= Process Value <= PSEE + Seco .5L configuration of analog input module in Module-1socket. condition is not true, then device start tunn operation [0000] TC input type selection. This must be selected if analog SCALE LOW POINT: Minimum process input value in Pt-100 input module in Module-1 socket is EMI-430. and Tc inputs. -1999 for fixed dual point display adjustment used inputs, Scale low point is the lowest one from EPoL or 000 PT-100 input type selection. This must be selected, if analog input module in Module-1 socket is EMI-440. EPoH for selectable dual point display adjustment used inputs Scale low point is the lowest one from Poss or Poss for multi Voltage / Current input type selection. This must be selected since analog input module is in Module-1 socket. point display adjustment used inputs SCALE HIGH POINT: Maximum process input value in Pt-100 and Tc inputs. 9999 for fixed dual point display adjustment used uRS / MODULE-1 --- Voltage/Current Input Module Selection inputs, Scale high point is the biggest one from [Pot] or It is active if input type of Module-1 is selected ____Voltage/Current EPOH for selectable dual point display adjustment used inputs Scale high point is the biggest one from Poll or Poll for 0000 0...50mV === (-1999; 9999) multi point display adjustment used inputs 000 | 0...5V === (-1999; 9999) O-00 PROPORTIONAL BAND SHIFTING 0002 0...10V === (-1999; 9999) ((-SCALE HIGH POINT/2), (SCALE HIGH POINT/2))Unit 0003 0...20mA === (-1999; 9999) If cooling function is performed: 0004 4...20mA === (-1999; 9999) Cooling process set value is calculated by adding set value PSEE With parameter o-db ძ₽ი ∤ point position for display Control form can be ON/OFF or PID. .It is active if input type of Module-1 is selected ____Voltage /Current. 0000 No point If set value for heating = PSEŁ + SUOF ; Then set value for cooling = PSEŁ + SUOF+ O-OB 0.000 | 000.0 5500 SENSOR BREAK OUTPUT VALUE 00.00 (FOR HEATING PID 0.0, 100.0)% 0.000 (FOR COOLING PID -100.0, 0.0)% [A | Calibration type When sensor breaks, controlling of the process can continue by entering %output value to 5500 parameter. .It is active if input type of Module-1 is selected ____Voltage/Current. If this parameter 0.0, process control output does not perform [2000] Fixed dual point calibration is performed. Minimum. an output when sensor breaks. value of calibration is -1999 and maximum value of calibration is 9999. Selectable dual point calibration is performed. Defines minimum value for selectable dual point calibration. .It is active if input type of Module-1 is selected === Voltage / Current. JEH | Defines maximum value for selectable dual point calibration. .It is active if input type of Module-1 is selected ——Voltage / Current. une! Unit selection ा Unit is °C oF Unit is °F Unit is U. - No unit. Loli Minimum value of operating scale (Low Limit). It can be changed according to analog input type and scale. սջև 1 Maximum value of operating scale (High Limit). It can be changed according to analog input type and scale Display offset for value in analog input module. It can be .Pu 1 adjusted from -10% to +10% of scale. This value is added to the process value. It is filter time for input signal. It can be adjusted from 0.0 to 900.0 It determines if the measured value from analog input module in r851 Module-1 socket is used as Remote Set or not. This parameter is visible if point position and unit parameters are same for process input and analogue input module. ্রেদ্র Measured value from analogue input module in Module-1 socket is used as process set value. User defined process set value is not considered Measured value from analogue input module in Module-1 0.0 socket is not used as process set value. User defined

process set value is considered

IOP1 ConF: MODULE-2 Configuration Parameters

These devices are equipped with an additional Relay Output plugged into Module-2 socket.

out 2 Defines output function for Module-2

HERE Heating

Cooling

Loub Logic output

[an] It is active if output function of Module-1 is heating or cooling.

onoF ON/OFF

P id PID

HY5구 Hysteresis value for OUT-2. It an be adjusted from 0% to 50% of defined scale. (It is active if ON/OFF control is selected.)

โมนกวิ It determines operation form of hysteresis. (ON/OFF)

mmm SV+HYS/2 and SV-HYS/2

SV and SV+HYS or SV and SV-HYS

In ON/OFF operation, this time must be passed for the output to be

logic output function of output module in Module-2
It is active if output function of Module-2 is Lout (Logic Output)

Alarm output

Manual /Automatic data output

Sensor break alarm output

Output is active when the process value is out of the band which is defined with minimum value of operating scale And maximum value of operating scale

Output indicates that Ramp/Soak function has finished

Sensor break alarm output for analog input module in Module-1 socket. (It is visible if one of analog input modules is plugged in Module-1 socket)

GOGS If process value is less than minimum value of operating scale for analogue input module in Module-2 socket or greater than maximum value of operating scale for analogue input module in Module-2 socket, process output becomes active. (This parameter is visible if one of the analogue input modules is plugged in Module-2 socket)

Measurement input selection for Module-2 alarm output.
This parameter is visible if Logic output function of Module-2 is Alarm output and one of the analogue input modules is plugged in Module-1 socket

ODDO Alarm output runs according to the process input.

Alarm output runs according to the analogue input module (2nd sensor input) in Module-1 socket

유년 는 근 MODULE-2 alarm

It determines alarm type. It is active if logic output function of Module-1 is an alarm output.

0000 Process high alarm

000 Process low alarm

0002 Deviation high alarm

0003 Deviation low alarm

0004 Deviation band alarm.

0005 Deviation range alarm

Heater failure alarm does not apply on these devices

유니 H 2 MODULE-2 Alarm-2 hysteresis value.

It is active if logic output function of Module-2 is an alarm output.

Ron2 Alarm on delay time (0, 9999)Seconds

It is active if logic output function of Module-2 is an alarm output

RoF2 Alarm off delay time (0, 9998)Seconds

Alarm off delay time. It can be adjusted from 0000 to 9998 seconds. When the value is greater than 9998 LECH, is seen on the display. It means alarm latching output is selected.

out3 ConF: Output-3 Configuration Parameters

oub∃ Defines output function for Output-3

HERE Heating

[ool Cooling

Loub Logic output

on Befines control algorithm of Output-3.

It is active if output function of Output-3 is heating or cooling

onoF ON/OFF control algorithm

P d PID control algorithm

HYS3 Hysteresis value for OUT-3. It can be adjusted from 0% to 50% of defined scale. (It is active if ON/OFF control is selected)

It determines operation form of hysteresis. (It is active if

ON/OFF control is selected)

000 ISV and SV+HYS or SV and SV-HYS

In ON/OFF operation, this time must be passed for the output to be energised again. (It is active if ON/OFF control is selected)

It determines logic output function of Output-3.

It is active if output function of Output-3 is Lout(Logicoutput)

0000 Alarm output

Manual /Automatic data output

0002 Sensor break alarm output

POutput is active when the process value is out of the band which is defined with minimum value of operating scale

2004 Output indicates that Ramp/Soak function has finished

ODDS Sensor break alarm output for analogue input module in Module-1or Module-2 socket. (It is visible if one of analogue input modules is plugged in Module-1 or Module-2 socket)

GODS If process value is less than minimum value of operating scale or for analogue input module in Module-1 or Module-2 socket or greater than maximum value of operating scale or for analogue input module in Module-1 or Module-2 socket, process output becomes active.(This parameter is visible if one of the analogue input modules is plugged in Module-1 or Module-2 socket)

Measurement input selection for Output-3 alarm output.
This parameter is visible if Logic output function of Output-3 is
Alarm output and one of the analogue input modules is
plugged in Module-1 or Module-2 socket

[0000] Alarm output runs according to the process input

(200 Alarm output runs according to the analogue input module (2nd sensor input) in Module-1 or Module-2 socket.

유니는 3 It determines alarm

It is active if logic output function of Output-3 is alarm output.

0000 Process high alarm

000 | Process low alarm

0002 Deviation high alarm.

0003 Deviation low alarm.

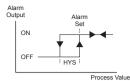
DOUY Deviation band alarm.

0005 Deviation range alarm

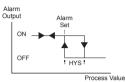
IsýtýcjArýzasjAlarmý. It is active if ~CT input module is plugged in Module-1 or Module-2 socket.

RLH3 Alarm- 3 hysteresis value. (Scale 0%, scale 50%)Unit
It is active if logic output function of Output-3

Ron∃ Alarm on delay time(0, 9999)Seconds

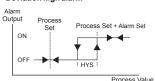

It is active if logic output function of Module-1 is alarm output.

Rof3 Alarm off delay time (0, 9998)Seconds

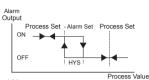

When the value is than 9998, [LLH] is seen on the display. It means alarm latching output is selected. It is active if logic output function of Output-3 is alarm output.

Alarm Types

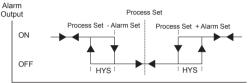
Process high alarm



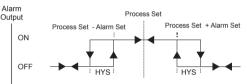
Process low alarm



Alarm Types


Deviation high alarm

Deviation low alarm



Deviation Band Alarm

Deviation Range Alarm

Process Value

Process Value

Gen ConF: General Parameters

- 5!!-! Minimum value for process set and alarm set values
- 511- U Maximum value for process set and alarm set values
- 500 2. Sensor Set Point Low Limit .sensor scale min. 5002) 2. Sensor Unit
- Module-1 or Module-2 socket Analog Input Modules. (If you have any of these parameters is observed)

 2. Sensor Set Point Hýgh Limit .sensor scale min. [SULZ])
- 2. Sensor Unit
 - Module-1 or Module-2 socket Analog Input Modules. (If you have any of these parameters is observed)
- 내년 문문 While the motor is completely off the valve fully open While the fully open or fully closed for the pass time required. Value between 5 and 600 seconds can be entered.
- (If motorized valve control is selected this parameter is active)
- [발발 H님] The minimum duration of the valve motor drive output (0.1, 5.0)% Ultt = 100 sec and ULH = %1.0 and the motor driving the valve outlet. The minimum time to be active in 100 * 1.0%=1 sec. (If motorized valve control is selected this parameter is active)

Com ConF: Parameters for Configuration of Serial Communication

588c Communication Accessing Address (1,247)

Communication accessing address of device. It can be adjusted from 1 to 247.

ം Rud Communication Baud Rate

[DDDD] 1200 Baud Rate.

000 | 2400 Baud Rate .

0002 4800 Baud Rate

0003 9600 Baud Rate 000円 19200 Baud Rate

우리는 님 Parity Selection for Communication

MANA No parity.

Odd parity.

0002 Even parity.

5분우등 Stop Bit Selection for Communication

0000 1 stop bit nnn i 2 stop bit

PASS ConF: Operator and Technician Passwords

0PPS Operator Passwords (0, 9999)

It is used for accessing to the operator parameters. [0000] : no password protection while entering to the operator Parameters.

If it is different from "0" and user wants to access to the operator parameters:

1- If user does not enter PPS password correctly: It turns

to operation screen without accessing to parameters.

2- When PPS in top display COOD and in 2- When PPS in top display OOO and in bottom display are seen, if user presses SET button without entering and in bottom oPPS Password (For observing the parameters): Operator can see operator menus and parameters but operator can not change the parameters

문문무를 Technician Passwords(0, 9999)

It is used for accessing to the technician parameters. If it is 0000 no password protection while entering to the technician Parameters.

If it is different from " 0" and user wants to access to the technician parameters

1-If user does not enter \(\frac{\frac{1}{2}P5}{\frac{1}{2}}\) password correctly: It turns to operation screen without accessing to parameters.:
When ECPS in top display 0000 and in bottom display are seen, if user presses SET button without entering
LEPS Password (For observing the parameters): Operator can see operator menus and parameters but

operator can not change the parameters.

Failure Messages

1 - Sensor failure in analogue inputs. Sensor connection is wrong or there is no sensor connection

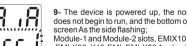
2- If parameter in "Disp List" menu is and analogue input module is plugged in Module-1 or Module-2 socket, this is sensor failure of analogue input module. Sensor connection is wrong or there is no sensor connection.

3-If parameter is and parameter is and analogue input module is plugged in Module-1 or Module-2 socket, this is sensor failure of analogue input module. Sensor connection is wrong or there is no sensor connection.

4- If top display blinks : If analogue input value is less than minimum value of operating scale [[ot] top display starts to

5- If top display blinks : If analogue input value is greater than maximum value of operating scale [uPL] top display starts to hlink

6- If operator or technician password is different from "0" and user accesses to the parameter by Set button without entering the operator or technician password and wants to change a parameter, the warning message is shown on the bottom display as shown on the left. Device does not allow to do any changes without entering the password correctly.



7- If tuning operation can not be completed in 8 hours. AT led starts to blink.Blinking can be canceled by pressing Enter button.

8-If user does not do anything for 120 seconds while device is on operator or technician menus, device turns to operation screen.

9- The device is powered up, the normal does not begin to run, and the bottom of the screen As the side flashing;

EMI-X30, X40-EMI, EMI-X50 Analog input modules installed at the same time the event occurs. The unit normal to return to work, the device energy cut-off and Analog Input one of the modules must be removed.

10- When power is on; not starting the normal operation and blinking the bottom display as shown on the left; It appears when two analogue input modules (EMI-410, EMI-430, EMI-440, EMI-450) are plugged in Module-1 and Module-2 socket at the same time. For starting normal operation power off and pull out one of the analogue input modules.

Installation

Before beginning installation of this product, please read the instruction manual and warnings below carefully.

In package,

- One piece unit
- Twopiece mounting clamp
- One piece instruction manual

A visual inspection of this product for possible damage occured during shipment is recommended before installation. It is your responsibility to ensure that qualified mechanical and electrical technicians install this product.

If there is danger of serious accident resulting from a failure or defect in this unit, power off the system and seperate the electrical connection of the device from the system.

The unit is normally supplied without a power switch or a fuse. Use power switch and fuse as required.

Be sure to use the rated power supply voltage to protect the unit against damage and to prevent failure.

Keep the power off until all of the wiring is completed so that electric shock and trouble with the unit can be prevented.

Never attempt to disassemble, modify or repair this unit. Tampering with the unit may results in malfunction, electric shock or fire. Do not use the unit in combustible or explosive gaseous atmospheres

During the equipment is putted in hole on the metal panel while mechanical installation some metal burrs can cause injury on hands, you must be careful.

Montage of the product on a system must be done with it's own fixing clamps. Do not do the montage of the device with inappropriate fixing clamps. Be sure that device will not fall while doing the montage.

It is your responsibility if this equipment is used in a manner not specified in this instruction manual.

Warranty

Kessler-Ellis Products warrants that the equipment delivered is free from defects in material and workmanship. This warranty is provided for a period of two years. The warranty period starts from the delivery date. This warranty is in force if duty and responsibilities which are determined in warranty document and instruction manual performs by the customer completely.

Maintenance

Repairs should only be performed by trained and specialized personnel. Cut power to the device before accessing internal parts. Do not clean the case with hydrocarbon-based solvents (Petrol, Trichlorethylene etc.). Use of these solvents can reduce the mechanical reliability of the device. Use a cloth dampened in ethyl alcohol or water to clean the external plastic case.

Other Information

Company Information: Kessler-Ellis Products 10 Industrial Way East Eatontown, NJ 07724

Phone: 800-631-2165 or 732-935-1320 Fax: 732-935-9344

Email: info@kep.com

Web: www.kep.com • www.kepmline.com

This symbol is used for safety warnings. User must pay attention to these warnings.

This symbol is used to determine the dangerous situations as a result of an electric shock. User must pay attention to these warnings definitely.

This symbol is used to determine the important notes about functions and usage of the device

Ordering Information

Model Number

mL-PIDC6

Description

PID PROCESS CONTROLLER 48 X 96 1/8 DIN 100-240 VAC (-15%; +10%) 50/60Hz

Universal process input (TC, RTD, mV, V, mA) Additional 0/4 - 20 mA Input

RS-485 serial communication with Modbus RTU protocol 1 Form C Relay Alarm Output (5A @ 250VAC with Resistive

1 Form A Relay Control Output (3A @ 250VAC with Resistive Load)

mL-PIDC8

Description

Load)

PID PROCESS CONTROLLER 96 X48 1/8 DIN 100-240 VAC (-15%: +10%) 50/60Hz

Universal process input (TC, RTD, mV, V, mA) Additional 0/4 - 20 mA Input

RS-485 serial communication with Modbus RTU protocol

1 Form C Relay Alarm Output (5A @ 250VAC with Resistive Load)
1 Form A Relay Control Output (3A @ 250VAC with Resistive

